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Use of Redundant Testing Functions in
Moment-Method Solutions for Block Models

Salvatore Caorsi, Gian Luigi Gragnani, Member, IEEE, and Matteo Pastorino, Member, IEEE

Abstract— An overconstrained version of the method of mo-
ments for SAR evaluation in biological bodies is presented. A
number of testing functions larger than the one of basis functions
is used in order to better constrain the solution near corners and
edges. A rectangular system is obtained that is solved by means of
a pseudoinversion algorithm. Comparisons with results reported
in the literature are made, showing an enhancement of the MoM
capabilities in SAR calculations, without a consistent increase in
computational requirements.

I. INTRODUCTION

N THE past few years, the method of moments [1] has

been proposed as an effective tool for evaluating the electric
fields scattered by three-dimensional objects. In particular, it
has been used to compute the distribution of electromagnetic
energy inside biological bodies exposed to an incident electro-
magnetic field [2], [3]. The knowledge of the specific absorp-
tion rate (SAR) is necessary when one addresses dosimetry
problems to prevent biohazards resulting from exposure to
unwanted nonionizing radiation, or when one applies a medical
therapy based on such a field (e.g., hyperthermia). More
recently, to overcome the moment method’s limitations (es-
pecially related to the expenses for computational resources),
other methods have been devised. For example, the finite-
element method and the finite-difference method have been
proposed (for wide references, see, for example, [4]-[6]). The
method of moments is currently widely employed, and the
issue of its real capabilities is still being debated. In particular,
pulse functions and block models have been discussed by
many authors, sometimes of different opinions about the
accuracy and effectiveness of such models. For example,
Massoudi et al. showed that the convergence obtained by
Livesay and Chen’s method becomes doubtful when the num-
ber of cells increases [7]. Hagmann [8] proved that this can
be avoided if the matrix elements are correctly computed
and the discretization cells suitably fit the object boundary.
Actually, the application of subsectional “hat” basis functions
and point matching appears quite an efficient solution, in
that, besides allowing very simple implementations, it offers
a wide range of possibilities for modeling biological bodies,
through the use of a reduced number of unknowns [9]. For the
sake of completeness, however, it should be noted that more
sophisticated (and more expensive in terms of computational
resources) versions of the moment method for inhomogeneous
dielectric objects were proposed by Schaubert er al. [10] and
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by Tsai er al. [11]. Up to now, many studies have been carried
out on the use of suitable subsections and of the related basis
functions. Instead, the aspects related to the implementation of
the moment method on the basis of testing functions need to
be further investigated, even though interesting considerations
about the use of testing functions in the moment can already
be found in [12] and in references therein cited.

In this paper, we aim to assess the moment method’s
capabilities by considering an overconstrained implementation
[13]. We compare the results obtained in applying this method
to simple test scatterers with the results reached by using the
“classic” moment method [14]. The overconstrained version
of the moment method (OMoM) employs a number of testing
functions that is larger than the one of basis functions. We use
pulse basis functions and Dirac’s deltas as weighting functions.
It 1s beyond the scope of this paper to discuss the accuracy
of such basis and testing functions. The OMoM could also be
implemented by means of different kinds of functions.

The proposed version of the moment method produces
a rectangular linear system of algebraic equations, and a
generalized inverse solution can be reached by applying a
suitable algorithm [15], [16]. In the following, we summarize
the theory of the method, and discuss some numerical results
that show the possibility of evaluating the average electromag-
netic energy deposition inside dielectric objects with higher
accuracy, though by using a reduced amount of computer
resources.

II. OVERCONSTRAINED VERSION OF THE MOMENT METHOD

Let V be the space volume occupied by an inhomogeneous
body illuminated by an incident electric field Ejn.(r). The total
electric field at each point inside the body can be obtained—as
is well known—by solving the equation:

E(r) = Ey (r)+ /v T(rE(r")G(r/r") dr’ (D

where G(r/r’) stands for Green’s dyadic function for free
space, and the function 7(r) is given by 7(r) = o(r) -
Jwegler(r) — 1].

A moment-method solution of this equation can be obtained
by expanding the unknown total electric field into a sum of N

basis functions, E1(r), -, Enx(r):
N
E(r)=)_ En(r). @
n=1

If pulse basis functions are used, this implies the subdivision of
the volume V' into /V subdomains V;,. We could use M, testing
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functions for each pth value, p = 1,---, N. If Dirac’s deltas
are used as testing functions, this is equivalent to considering
M, testing points for each subvolume. Substituting (2) into
(1) and weighting the resulting equation by means of an inner
product, we obtain an algebraic system of linear equations
that can be written as

[G]LE] = [E.]. 3

The dimensions of the quantities involved in relation (3) are
the following:

[E]:N x 1 4)
N
[Ei]:ZMp x 1 (5)
p=1
N
[Q): ZMP x N (6)
p=1

So far, this version of the moment method has been used
assuming M, = 1 for each p. Since this approach constrains
the solution only at the central points of the cells [14], [17],
the overconstrained moment method could better constrain
the solution to the scatterer’s geometric shape and dielectric
discontinuities. In particular, we assume M, to be larger than
1 in the cells near edges and corners, where strong variations
may occur in the electromagnetic field. In this way, while we
can still approximate the field value inside a cell by a constant
value, we can also constrain such a value to be the one that
best fits not only the field value at the cell center but also the
field values at all testing points in the cell. Of course, when
we adopt the proposed approach assuming M, > 0 in some
cells, the Green matrix [] turns out to be a rectangular matrix,
hence a solution to system (2) cannot in general be reached
in a classical way. However, a least-squares pseudosolution
to system (2) can be obtained by applying a pseudoinversion
algorithm [15], [16].

The use of a large number of testing functions would result
in higher computational accuracy. though by use of the same
number of basis functions. While, for traditional MoM, the
only proper action for the field evaluation in regions where the
e.m. field varies to an appreciable amount is to increase the
discretization cells number, the overconstrained MoM could
yield equal simulation results considering a reduced number
of cells. The examples given in the following show that this
goal can be attained, provided that the number of testing points
and their locations are correctly selected.

III. NUMERICAL RESULTS AND DISCUSSION

Here we present the results obtained by the algorithm
described in the preceding section. In order to test the validity
of the approach, we focused our attention on three cases
previously reported in the literature [14], as they had been
considered to evaluate the convergence and accuracy of the
traditional MoM version.

The assumed configuration is a homogeneous dielectric cube
(edge length: “L”), illuminated by a uniform plane wave
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Fig. 1. Schematic representation of the scattering geometry and testing-point

locations for a 27-cell model.

propagating in the z direction and polarized with the electric
field vector along the z axis (Fig. 1).

In the first set of simulations, we considered an edge length
of 0.5 cm and the following dielectric parameters: £, = 77.1
and o = 1.40 S/m. The operating frequency was 400 MHz
and the average power density was equal to 1 mW/cm? [14].
More than one point for each cell was assumed for the cells
near corners and edges (for inhomogeneous objects, redundant
testing points should be located near discontinuities). In par-
ticular, in each cell near a corner, testing points were placed
on the segments linking the cell center to the corer and the
cell center to the middle points of the three segments forming
the corner. Another testing point was placed at the center
of each cell. In each cell near an edge, testing points were
located at the cell center and on the segment linking the cell
center to the middle point of the edge. A global view of the
testing points for a 27-cell model is shown in Fig. 1. For this
discretization, we located only one testing point on each of
the previously defined segments; as a result, we had M, = 5
in the corner cells and M, = 2 in the edge cells. for a total
of 71 testing points. To fix the location of each testing point
on the related segment, we used the following rule: we call
an “hth configuration” the configuration of testing points in
the case where the distance between each testing point (on the
related segment) and the cell center is equal to hl/n (I being
the length of the related segment and n being a fixed number
that is equal for all testing points).

For these examples,we assumed n = 25, giving 24 possible
different configurations (h = 1,---,24). The results of the
numerical simulations were obtained by using the above
values. Fig. 2 shows the histogram of the percent errors on the
evaluations of the average Specific Absorption Rate (SAR) for
the 24 configurations, defined as

SAR — SARconvergencel , |
| SARconvergence |

Such errors were evaluated taking, as a convergence value,
the extrapolated value reported in [14]. As the errors depend
on the positions of the testing points, then great care must be
exercised in selecting such positions. However, the histogram
shows that an area exists for which the error is very small,
hence the SAR can be estimated to an accuracy that is

ERR =
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Fig. 2. Percent errors on the evaluations of the average SAR versus
the 24 different positions of the testing points for the first simulation
(¢ = 77.1,0 = 1.40 S/m, edge length = 0.5 cm). Continuous line: 27-cell
traditional MoM.
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Fig. 3. Percentage of 27-cell overconstrained cases giving SAR values
better than those obtained by classical MoM implementations for various
discretizations. First simulation case (¢ = 77.1,0 = 1.40 S/m. edge length
= 0.5 cm).

comparable to that reached by a classic MoM using 64 or
more cells.

Fig. 3 shows the percentage of 27-cell overconstrained
cases that gave better estimates of the average SAR than
“classic cases” using various discretizations. As can be seen,
over 50 percent of the simulations yielded average SAR
values comparable to (or better than) those given by a 64-cell
traditional MoM.

For this first example, another set of simulations were
performed, using a 64-cell discretization. We used M, = 5
for the corner cells and M,, = 2 for the edge cells, for a total
of 120 testing points. In Fig. 4, the SAR behavior is presented
and compared with those obtained in “classical” MoM cases
considering 125 and 216 cells. It can be seen that the use of
64 cells results in a more regular behavior of the SAR values,
which, for any configuration, is close to the convergence value.
The same figure also shows the plots related to 1- and 8-cell
OMoMs; these plots were obtained by following the previously
described rule for choosing comer and edge testing points.
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Fig. 4. First set of simulations (s, = 77.1,6 = 1.40 S/m, edge length =
0.5 cm): average SAR’s in overconstrained cases for 1-, 8-, 27- and 64-cell
discretizations. The numbers of the 24 configurations are given on the abscissa.
The same figure also presents the average SAR values obtained by a 64-cell,
a 125-cell, and a 216-cell traditional MoM.

These cases, however, are far from convergence. hence very
good simulation results cannot be expected.

The second set of simulations were performed considering
a cube with an edge length of 2.5 cm and the dielectric
parameters ¢, = 77.1 and ¢ = 1.40 S/m; the cube was
illuminated by a plane wave at a frequency of 400 MHz [14]. A
27-cell discretization was used. In this case, the convergence
value was not available, so we used another parameter for
comparison purposes. As the average SAR value increases
monotonically with the cube subdivision [14], it was interest-
ing to deduce the improvement in SAR evaluation (obtained by
the overconstrained method) from the increases in the varicus
SAR values. Fig. 5 presents the SAR behavior versus the
locations of the testing points, for a 27-cell discretization,
and Fig. 6 shows the percentage of 27-cell overconstrained
cases giving better SAR values than those obtained by classical
MoM implementations for various discretizations. Even in the
case of a 2.5-edged cube, it appears that the overconstrained
MoM may lead to an improvement in the solution. It is worth
noting that it is easy to make a suitable choice of testing points:
for over 60 percent of the simulations, the OMoM gave SAR
values that were better than the values given by a classic
64-cell MoM scheme. .

The third set of simulations dealt with a cube with an edge
length of 30 cm and the dielectric parameters &, = 76.0 and
o = 0.42 S/m; the cube was illuminated by a plane wave
at a frequency of 27.12 MHz. This simulation arrangement
was previously considered by many authors [7], [14]. Evenin
this case, an improvement over a classic MoM solution was
achieved, as shown in Figs. 7 and 8.

In particular, it should be noted that, in all the cases
considered, a region between the center of a cell and an
edge or corner exists for which a certain improvement can
be expected, and for which the positions of the testing points
are not too critical. Although, at the present stage of our
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Fig. 5. Behavior of the average SAR versus the locations of the

testing points, for a 27-cell discretization, in the second simulation case
(¢ = T7.1,0 = 1.40 S/m, edge length = 2.5 cm).
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Fig. 6. Percentage of 27-cell overconstrained cases giving SAR values
larger than those obtained by classical MoM implementations for various
discretizations. Second simulation case (g, = 77.1,0 = 1.40 S/m, edge
length = 2.5 cm)

10

research, rigorous criteria for selecting the testing points are
not available, a rule-of-the-thumb for a suitable choice of the
overconstraining testing points could be deduced from the
results of the numerical simulations performed. For instance,
one might use the following criterion: according to the rule
for locating the testing points on given segments (described at
the beginning of the Section), an “hth configuration” must be
chosen, with h ranging between the limits:

[2n] <h < [En] +1 (8)

where n is a fixed number (equal for all testing points), as
defined at the beginning of Section III, and the symbol “[£]”
stands for the integer part of £.
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Fig. 7. Behavior of the average SAR versus the location of the testing points,
for a 27-cell discretization, in the third simulation case (¢, = 76.0,0 = 0.42
S/m, edge length = 30 cm).
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Fig. 8. Percentage of 27-cell overconstrained cases giving SAR values
larger than those obtained by classical MoM implementations for various
discretization. Third simulation case (&, = 76.0.0 = (.42 S/m, edge length
= 30 cm).

This rule may lead to an error on SAR evaluation that is
about 60% smaller than the one obtained by the classical MoM
solution for the same discretization.

Finally, to allow an evaluation of the cost/benefits ratio
related to the proposed method, in terms of computational
load, Table I gives the CPU times and the memory units
for the Green matrix (i.e., the element that requires most of
the memory), for some of the configurations considered. Note
that each additional testing point introduces an overhead into
the dimensions of the Green matrix, as compared with the
classical MoM. Nevertheless, this overhead is very limited,
in that the dimensions of the Green matrix increase linearly
with the number of testing points, while the addition of a
cell would involve a quadratic increment. All the values have
been normalized to the ones related to the 27-cell traditional
MoM. It is interesting to note that the use of an OMoM with
only 27 cells but 71 testing points requires computational
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TABLE 1
HomoGENEOUS DIeLECTRIC CUBE: CPU TIMES AND MEMORY REQUIRED FOR
THE GREEN MATRIX. ALL VALUES HAVE BEEN NORMALIZED
TO THE ONES RELATED TO THE 27-CELL TRADITIONAL MoM.

CPU time units | Memory units
MoM 27 1.00 1.00
OMoM 27 (71 testing points) 2.35 2.63
MoM 64 5.39 5.62
OMoM 64 (120 testing points) 19.68 10.563
MoM 125 33.17. 21.43
MoM 216 144.23 64.00

Dielectric ix
Cylinder

Ei(r) = Eoexp{—jkoz}x

4
Incident Fatigg ¥ Z
plane wave o 1 em—>
Y
Muscle
J —r
Y A ,\/6‘

1 mm
Geometry of the inhomogeneous scatterer (fat: &, =
o = 0.15 S/m; muscle: ¢, = 48.4 and o = 2.1 S/m).

Fig. 9. 4.7 and

resources that are fewer than half the ones necessary for a
64-cell classical MoM, whereas the obtained results can be
compared with those of a traditional MoM using 124-cells
or more cells. Therefore the 27-cell OMoM needs a limited
computational overhead to yield a notable improvement over
the classical MoM solution.

We also wanted to assess the capability of the OMoM in the
case of a dielectric discontinuity. To this end, we considered
a cylinder of finite length (10 cm), made of fat (e, = 4.7 and
o = 0.15 S/m) and muscle (s, = 48.4 and 0 = 2.1 S/m)
(as in the work by Livesay and Chen [2]) and illuminated by
a plane wave at a frequency of 2.45 GHz. Fig. 9 shows the
geometry considered. Such a geometry causes the total electric
field to be mainly parallel to the cylinder axis; so it is easy to
evaluate the behavior of the method of considering only one
field component. The cylinder was subdivided into 100 cubical
cells of equal size (1-mm edge).
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Fig. 10. Testing-point locations near a fat-muscle interface, and histogram of
the amplitude of the = component of the electric displacement vector D [C/m?]
near the interface. )

We enforced the constraints on. each discontinuity region
between muscle and fat in order to satisfy (even though in
an approximate way) the continuity condition on the normal
component of the electric displacement vector D. To this
end, we used 2 testing points in each cell at the interfaces,
for a total of 104 testing points. Fig. 10 points out that
the results obtained by the classical MoM are affected by
large discontinuities near the interfaces. The OMoM solution,
on the contrary, seems much more regular. Note that the
classical MoM solution was- absolutely insufficient to ensure
the continuity of D across the interfaces, as the electric-
displacement amplitude in muscle is 1.7 times that in fat.
Instead, the OMoM gave very close values, the ratio between
the two amplitude values being equal to 1.1.

IV. CONCLUSIONS

A numerical method has been analyzed in applications to
scattering problems inside bodies whose features resembled
those of biological tissues. The method is an overconstrained
version of the traditional MoM, and allows one to take into
account the strong field variations occurring on the edges
and in the corners of a scatterer. It has been shown that the
method may sensibly enhance the convergence of the solution,
thus allowing a considerable saving in computer resources. At
the present stage, the method requires some care in choosing
the best locations for the overconstraints; only a rule-of-the-
thumb has been derived for the best choice of additional testing

* points. Future work will be aimed at studying realistic models

of biological bodies by using the OMoM. Such models will
definitively demonstrate the capabilities and limitations of the
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proposed approach. Moreover, the method may be further
refined by using more suitable testing functions to smooth
away the field variations that may result from changing the
positions of edge and corner testing points.
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